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Abstract 

We discuss a few results on quantum groups in the context of rational con- 

formal field theory with underlying af%e Lie algebras. A vertex-height corre- 

spondence - a well-known procedure in solvable lattice models - is introduced 

in the WZ’iV theory. This leads to a new definition of chiral vertex operator in 

which the zero~mode is given by the q-Clebsch Gordon coefficients. Braiding 

matrices of coset models are found to factorize into those of the WZW theories. 

We briefly discuss the construction of the generators of the universal enveloping 

algebra in Toda field theories. 
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By now, there are two apparently distinct places in theoretical physics in which the 

quantum group i.e. the q. deformation of the universal enveloping algebra [1,2,3] pro- 

vides a relevant structure. The one is physics of quantum spin chains (or equivalently 

the classical statistical mechanics) associated with the trigonometric solutions[4] of 

the Yang-Baxter equation[5,6]. This is the original place in which the quantum group 

structure was found. The underlying system can be viewed as a lattice-regulated 

quantum field theory. The other appears as monodromy properties[7,8] of a class of 

rational conformal field theories with underlying afbne Lie algebras. The most con- 

crete realization can be found in the WZW theory. It is well-known that conformal 

field theories predict finite size corrections to the macroscopic quantities of the sys- 

tem in the large volumes. On the other hand, there are in fact computations of finite 

size corrections based on Bethe ansatz in solvable lattice models, which agree with 

conformal field theory predictions. It is, therefore, not inconceivable to suspect that 

these two applications of the quantum groups are in fact related: the latter being ob- 

tained as the continuum limit of the former. I will not try to pursue this program in 

this talk. What I will discuss instead is a few results[9] which are inspired and trans- 

planted from the structure of the solvable lattice models, but which have their own 

rationales solely in the context of rational conformal field theories. First, I will give a 

brief account on the construction of the guantum group generators in the generalized 

Toda system (GTS) as quantum field theory[lO]. Then, without a logical connection, 

I turn to the discussion of the monodromy properties of WZW theory. I take the 

differential equation of Knizhinik and Zamoiodchikov as a starting point and present 

a few attempts mentioned. The monodromy properties of the coset theories can be 

obtained from those of the WZW theory. Finally, I will briefly discuss a perspective 

for the more logical connection as well as the construction of universal enveloping 

algebra in Toda field theories[ll]. Further references on the subjects discussed here 

can be found in [9,10]. 

I)’ In a class of vertex models where fundamental variables are arrows taking the 

value 1 N -V, Yang-Baxter relation takes the form 

Sj S:+l S:' = S:+l ,I' Sj+ 1 , 

Sri A-; = x; A-; . (1) 



Here, the operators Xj ~ X~(U), “J ~ Xj(1~‘), and X:’ ~ Xj(U” = U’ - ~) act 

nontrivially on the arrows in the j th column and the j + 1 th column (-51 <_ j 5 M) 

in a tied row and take them to the ones in the next row. (See Fig.1). One-parameter 

family of the matrix elements labeled by u represents local Boltzman weights of the 

corresponding arrow configuration around a vertex. Here, we have drawn a row ( 

fixed time slice) 45 degrees tilted to the t ads. The resultant time flow is to the 

southwe&. 

One way to characterize GTS is that the above infinite dimensional algebraic rela- 

tion reduces to a finite dimensional algebra (or, to be more accurate, its completion) 

In A, case (IV = n + l), eq. (1) reduces to Xj = ~(1 + y(~)Vj) with 

UjUj+lUj - Uj = Uj+lUjUj+~ - Uj.+, , (2) 

Uj’ = ‘?coshXUj , (3) 

UiUj = UjUi , for i # j * 1 . (4) 

Here, X is a coupling ( or parameter) of the theory and p is an arbitrary constant. 

We aiso introduce 4 c -2, and A s - coshX. The regions -1 < A < 1 and 

A < -1 represent respectively critical and antiferromagnetic regimes. In order not 

to introduce further relationship among Uj’s, we have adopted here Cxed boundary 
,. . 

cona1t1on: fL’-,,f = PM+~ = the highest vaiue. 

Up to a trivial resealing, Equations (2), (3), (4) are defining relations of the Hecke 

aigebra U,ff,,,. The function y(u) sets a momentum-rapidity relation of the system : 

y(zl) 3 q(C - 1) s &P 
qy-1 . 

Here, we introduced [ = e-“‘. For A < -1, u imaginary (real) corresponds to 

real (imaginary) p i.e. ,\Iinkowski (Euclidean) field theory. For -1 < A < 1, set 

X = ip with p real, and u = ip/2-a/2. Real L+ corresponds to -(r-p) < p < (T-/L). 

The solution to eq. (I) in A, case is expressible as 

Uj = 5 E:,@ @ EF; - q-’ 
aJ3=La#f3 

e E;., @ E;y - ‘I 5 Ei,, @ E$j; ( (6) 
u.L?=1.a>u .¶d=l.a<4 

It is worthwhile to note that lim 
P=..+,U--+*aD 

Xj(U) = i(Uj + l/q) CZ r’) Safely 
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provides an operator obeying Braid relation : 

,j&+l,j = ,j+l,j,j+l (7) 

2B = dja’ ) i#j+l. (8) 

It is well known that a sequence of mutually commuting conserved charges is 

generated by one-parameter family of commuting transfer matrices. In the current 

formalism, the transfer matrix is simply 

T(f) = &l/K‘rr~~~ x&f . (9) 

The Hamiltonian can be defined to be the lowest nontrivial term in the expansion of 

T(C) around C = 1. It consists of the nearest neighbour interations only. In A,, case, 

H=C7-lj E j q -lq4f: uj . 
This identifies the generators of the Hecke algebra with the Hamitonian density. The 

higher order terms tell us 

CUj $CUjUj+l >‘..~CUjUj+l”‘Uj+t, .‘* 1 
j 3 , 

are a set of bases for the conserved charges. 

Another useful bases for the sequence of conserved charges are 

(11) 

Qn = j SC”-‘ST( C) ,neZ. (12) 

Here, S is the shift operator which shifts the arrow labeling by one unit. The boost 

operator & = Cj‘Jij acts on Q,, as 
2 

[La Qnl = n&m . (13) 

Let us now examine the symmetries of the system. For simplicity, we restrict 

ourselves to ;I, case. .in inspection on expression (6) immediately tells that there 
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are rather obvious n abeiian generators which commute with Hamiitonian and the 

transfer matrix : 

hl = xh;, l<!sn , 
j 

(14) 

( 

1 

1 

j 
exph: E diag l,...,-,q,l,... . 

P 
(15) 

What is much less obvious is that, for an arbitrary value of q, we can construct 

conserved operators which are analogs of the step operators of SU(n + 1). Let 

4.0, 3 exp -&cl = f: , 

4,l.f = J%+~.~ = d (16) 

The generators corresponding to simple roots are et = xei and fr = cfl. The 

choice of the exponential factors is crucial in proving vaniihing commutate: with the 

Hamilton& and the transfer matrix: 

[H,etl = [H,fLl=O 

[ T(C),ec 1 = [ T(C),fc 1 = 0 . (17) 

At A = 1, Q’S and fc’s become the ordinary group generators of SU(n + 1). At 

A = 0, n = 1, eq. (16) reduces to the familiar Jordan -Wigner transformation for the 

Pauli spin operators. The generators ht, et, and fc constructed above are the Chevally 

generators of U(A,) and form an algebra 

exp (hJ2) ep exp (-ht/2) = q”‘~‘l’.+ 

exp (h,/2) fee exp (-h,/2) = q-a~~~s/2fC 

kc, ftl = &,r exp hr - exp - ht 
q-q-’ ’ (18) 

Here, the matrix a(.~, is a Cartan matrix for A,,. The remaining generators of U(g) 

are given recursively by ttvt. = tLfs, tt,t,r, - qtfrr,f,tt,l,, (e 5 e” 5 1’) with tt (+, z ec and 

ti+~ G ft. This choice is dictated by the q-analog of the Chevaliy relation. 
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We have presented here the quantum group structure of GTS in the vertex repre- 

sentation. The transition to the path representation is made through the q-Clebsch 

Gordan coefficients as an intertwiner. This is a special case of the well-known vertex- 

height correspondence. We will see the same structure in the WZW theory. 

2)O Monodromy properties of Wess-Zumino-Witten model: Let 3 be a simple 

affine Lie algebra and g,^ be a primary field of the WZW theory transforming in the 

representation labelled by the highest weight A. Here, a weight index a, which is 

generally denoted by a set of integers, labeis the components of the primary fields. 

The object we study is the n-point correlation function 

G” A,.i....A, 
( 1 ( 

z1,.%...GI;r;,.%, ...&I= (g~~(rl,~),)g~:(z2,~)... g~~(Z”,cJ) , P, P,...ol” 

obeying the differential equation of Knizhnik and Zamolodchikov[l2]: 

( 
a 2 1 

) 

cz;,ci;...-.~: 

zg + j&k + &)p r;--zj @ t4 CL 
A, .%,...A, 

( 1 
= 0 (20) 

=,,-2,--.Pn a;.;...& 

Here, h and i are the level of the affine Lie algebra and the dual Coxeter number 

respectively, and 9’ is defined through fycf& = -i&g,*. The correlator is originally 

defined in the region lzll < 1.~21 < . . < Iz,I and analytically continued to the 

other regions. The differential equation is, therefore, defined over the domain X,, E 

{(=I, .. I,,) E C, ; 2; # Zj if i # j}. Th e un f d amental group of X,, is the pure braid 

group with n strands. From now on, we suppress the dependence on the &‘s. Eq. (20) 

can be written as 

(21) Cd + w) 
CI: ,+...a: g 

=L,-II~-,=m n ( 2,,22,...,2,)=0 

by introducing a one-form w = c +tF 8 t,“dlog(r; - zj), taking the value in 
l<i<j<n(k+h)B 
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End (VA1 @ . . . I’*-) Th e soiution can formaliy be written as 

G” 
*,*2...*, 

i 1 
(Z1,i2,...L, 

=,.a>...Oln 
)= (Pexp(-l:w)G,) ( ^:“:+~:) (Z1O?ZZO,~~~Gd 

(22) 

with respect to the one at base point zs = (~~0, zZO, . . . zno) and the symbol P implies 

the path ordering of the exponential. We introduce 4 = exp(-2). 

The monodromy of the conformai block around the singularity r+ = =;+I is defined 

tobeM(‘)=Pexp(-$Triw). Here 7:) denotes a closed path which starts and ends 

at base point zo and goes around the line 7’ - -’ “I - “IC1. The braiding matrix uci) is defined 

to be the square root of MC’) times the permutation matrix. It is straightforward 

to evaluate the eigenvalues of a, particular 0 ci) from the above expression. But such 

evaluation does not provide a conceptual explanation of the coincidence noted by 

many people. What we would like to explain is that ail elements of a(‘)‘~ are, up to a 

similarity transformation. equal to the vertex Boltzman weight of the corresponding 

GTS realizing the quantum group. For definiteness, we consider the case AN--~ in 

which all A’s are in the fundamental representation. Here, we only give essential 

logical points. For a full elcplanation, see in ref.[&?,!J]. 

The first step is to show that o(~)‘s form a representation of Hecke algebra H,: (u;- 

q)((r; + n-‘) = 0. For that purpos+ unambiguous bases fez the conformal blocks must 

first be determined. The ordinary definition of chiral vertex operator[7] provides the 

path bases which qualify this. In this bases, all elements Q,‘S are reiated to ~1 simply 

by a similarity transformation given by the fusion matrix[l3]. These arguments are 

essentially due to Kohno[B]. The second step is the point we already discussed before: 

the B matrix or vertex Boltzman weight in the integrable lattice models at infinite 

spectral parameter in general provides a representation of the braid group B, through 

End (VA1 43, . . . VA-). In the A ~-1 case, it also provides a representation of Hecke 

algebra. The third step, which is due to Wenzi[l4], is that any finite dimensional 

representation of Hecke algebra can be obtained through this procedure. 

The above argument is sufficient to tell us that there exists a similarity trans- 

formation S which brings all elements of the braid group into the h matrix of the 
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quantum group: 

(23) 
On the other hand, the existence of the operator formalism of WZW theory guarantees 

the factorization of n-point correlator into four point blocks, and we may write 

g:; (z;)g$,‘: (&+I) = a(‘!-: / 01. a.+, -i+$+l (z;+1)&+, (2:) . (24) 

We have seen that the product of the primary fields of WZW theory carrying 

weight indices of the classical Lie algebra has turned out to be the representation 

space ( of the vertex type) for the Hecke algebra and therefore for quantum group. 

The intertwine1 to the path representation is given by q- Clebsch-Gordan coefficients. 

Let the composed operator in eq. (24) b e acting on a direct sum of the irreducible 

jl modules ‘Hd’s with the highest weight Ad’s. The above discussion tells us that , in 

accordance with the decomposition of the tensor module , 

‘Ha c3 nHi = C?iHb, nb @ 'Hi+1 = End , 
b d 

(25) 

it is legitimate to expand eq. (24) as 

Here, we haveintroduced an operator Vi:) (z;) which might be called a q-version of the 

chirai vertex operator discussed before. This operator carries over the normalization 

of the ordinary chiral vertex operator, but has no reference to the weight indices. 

A set of coefficients cP$’ Dli =< a,M; / 6, M; - ai ; A;, ~1; > is a q-version of 

the Clebsch-Gordan coefficients. They serve as basis vectors of flat sections (zero 

mode part) of the trivial vector bundle over X,. The coefficient c~~*“*‘+‘) reflects 

representation dependent normalization of the chiral vertex operators. * 

Eq. (26) permits us to translate eqs. (23),(24), into the exchange algebra of the 

‘To determine this, one usually has to solve the connection probiem of the attendant differential 

equation. See [il. 
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q-vertex operators : 

EB(*~,*~+,) ayd 1 1 u$+q*;+l)up;‘(z;) , b’ b,b’ , 

~(.h;.Ai+,) a,d i 1 b, b’ = ’ 
--3/1(c~~*‘..~‘+~))-~w(~i,l~i+,) (u4m) c~d*iv’i+~(27) 

The braiding matrix BtA~.*‘~+ll 1 1 ba,: is, up to the diagonal similarity transformation 

due t.o the normalization of the vktex operator, given by the face Boltzmann weight 

~~(*‘oh+~l e corresponding GTS at infinite spectral parameter. 

In the case \ihere all representations A;‘s are in the fundamental representation, 

the explicit answer for the Boltzman weight can be extracted from ref. [15]. In 

the simplest case A?1 in which A;‘s are in the spin l/2 representation, the answer 

agrees with the result by Tsuchiya and Kanie (71 : 

-g”Vj,,, 

q-‘/yJ 

for .I= jail/2 

for jo=J=O. k/Z 

08) 

Here, cjo+,/z=r(-w)/ r(-w)r(-&pi). and c. _ ,p ,,.=I.( w),dm, and‘the 

q-number j is defined by ljl=L$. 

Among the primary fields of of a given RCFT, the most relevant operator i.e. the 

one carrying the lowest conformal dimension has been given a special meaning: we 

can regard it as an elementary fmld out of which the rest of the primary fields is 

expressed as its composites. The formula (28) given above is for those cases in which 

the external primary fields are the most relevant ones. The braiding matrices for 

the arbitrary primary fields can be obtained from those for the most relevant ones. 

This is certainiy true for WZW and the coset 5$&!+ AU primary fields can then 

be obtained as repeated products of the most relevant one. The problem now is to 

find braiding matrices for these “composite” (higher spin) fields. The relevant ma- 

trices satisfying the braid relation can be obtained from the (trigonometric) solution 
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of the Yang-Baxter equation for the higher representations by sending the spectral 

parameter to infinity. There exists a well-known procedure called fusion procedure in 

the integrable lattice models which generates these solutions from the fundamental 

ones[l6]. We will not review it here. The solutions essentially consist of product of 

Iz matrices with prescribed shifts of the spectral parameter. The product begins and 

ends with projectors. The identical procedure, module the problem of the phase, can 

be implemented solely in the context of RCFT. In Fig. 2, we indicate how the proce- 

dure goes through. Take, for instance, a five point block and regard that 1,2,4,5,6, 

are most relevant fields. We obtain 

pa 1,4 

1 I a, b 

We represent this equation by Fig. 3. The fusion matrix F in eq. (29) play the role 

of projection and inclusion operators. They are the 6-j symbols of the underlying 

quantum group. 

3)” Monodromy properties of coset models: Coset models form an interesting 

class of RCFT. Here we would like to show how the braiding properties of the G/H 

coset models can be obtained from the ones of the G-WZW theory and the ones of 

H-WZW theory. For definiteness, we consider a coset G/H = A~~,(k!e%&O) 
-&iil (kfl) 

with 

diagonal embedding. The arguments I;, 1, and Ic + 1 refer respectively to the levels of 

the Kac-Moody algebras. 

The factorization formula of the characters by GKO implies that , for a given 

primary state in the coset theory under consideration and a primary state in H 

theory, one can find a unique state in G theory. This state, however, is not necessarily 

primary: the diagonal embedding of the H theory into G theory is in the sense of 

Kac-Moody modules. A point worth making here is that the monodromy properties 

of the conformal block is insensitive to this ambiguity as conformal dimensions for 

the primary fields and the ones for their descendents differ only by integers. The 

formula we give below should be understood in this sense. One can also show the 

factorization of fusion coefficients, starting from the Veriinde’s formula[l7]. 

Therefore, the q-vertex operator of the G theory introduced in eq. (26) naturally 
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factorizes into the one of the H theory and the one of the coset theory. We may, 

therefore, write 

v a*,a,yiy,b, (2) = c tii’ (z) %F) (2) (30) 
u.b,X 

Here, Q, /3 and CJ respectively denote triplets of integers a = ,P= 

(“l;“),anda=( ‘z). 

Let the exchange algebra of the coset theory be 

(31) 

Here, Bl;“ig’ a” 1 I P,P is a braiding matrix for the coset theory which we would like 

,- 7 

to express in terms of the one Us”)“““‘) 

B$) a,d 1 I b, b’ 
for the H theory. 

for the G theory and the one 

Start from the exchange algebra of G theory (cfeq. (27)). We apply the factor- 

ization property (eq. (30)) to the right hand side. As for the left hand side, we first 

use the factorization property and subsequently the exchange algebra of the H theory 

and the one of the coset theory i.e. eq. (31). Taking matrix elements with respect to 

an arbitrary state in the coset theory, and subsequently in H theory, we conclude 

c z@~‘*‘~) :;;z”,::‘z, &b##e (b’ G (b;‘.b:‘)) 
b;‘,b; 1 I 

= bsZby@“A” i;;‘;] %/‘i?’ [ ;;,I . (32) 

The braiding matrices for the coset models are given by solving the above factorized 

formula. The symbol 8(b’ c (by, bz)) re ers f to an embedding restriction. 

It is straightforward to apply the formula eq. (32) to the minimal discrete series 

described by the coset A~‘)(k)L%4!‘)(II 
A!“(k+l) 

The most relevant primary field is labeled by 
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r= 
+,o 

( 1 L . 
Let the incoming and outgoing primary states of the G theory be 

(ar,as) l (spinji,O) and (dr,dz) = (spinjr,O) respectively. Likewise, (br, bs) = 

(j = ji + l/2, 0), (b;‘,bg) = (j” = j; i l/2, 0). The H-primary fields a,d,b,b” 
arc diaginal embeddings of the above ones. Since both ,136 and BR are known from 

the WZW model (eq. (28)), the above formula (eq. (32)) determines the braiding 

matrices of the most relevant field for the arbitrary incoming and outgoing primary 

states in the minimal series. It is instructive to compare this result with the one from 

the Coulomb gas approach in the caie of the Ising model. We denote the braiding 

matrices B&$1;;,] 

0. 0 

byii?yfor 1 = (“y ), c = ( ‘L), and 

f= 
i i 

. We obtain 
1 
r ,’ 

a( p 
3 

/ =-“& 
z \izL - 

JT /y/, ,, 

T- I 

'i 
o- '\ J'i; < 

^ -xc/~ I I 

\ TE 
c-=8 i 

i I JYr = -<yr = <‘ik/p /A. \ \,, ” .’ , 
c I’, j/v ‘<\, 

>r = 1-m, 
b (33) 

c_ 
This agrees with the t$e restit from the Coulomb gas app:oach!lS! except for 

the --& factors in j 
0 

v for (p,p”) = (1,s) ,(s,l). These factors can be 
0’ 

attributed to the normalization of the bases diiierent from the one employed here. Tlte 

braiding matrices ior general external primary fields of coset models can be obtained 

from the one gi\-en in eq. (32) by the fusion procedure described in eq. (29) for the 

WZW theory. 

4)’ So far. our discussion on quantum groups consists of the two diconnected 

parts which one can relate only by an analogy. Let me suggest here a more direct 

connection between the braiding matrices of WZW theory and iz matrix of the GTS. 
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Our main proposal eq. (26) is partly suggested by drawing an analogy to the well- 

known vertex-height correspondence in a class of integrable lattice models. It would 

be desirable if the exchange algebra eq.(27) follows directly from the structure of the 

lattice correlation functions. The braid relation appearing in WZW conformal blocks 

is nothing but the Yang-Baxter relation in the infinite momentum frame. Moreover, 

the notion of monodromy is already in the lattice correlation functions despite the ab- 

sence of the complex z-plane[I9]. 0 ne can presumably deduce monodromy structure 

of the conformal block, by studying lattice correlation function in the analytic rapid- 

ity plane and taking a continuum limit in the end. Some of the techniques developed 

in 1201 appear to be relevant. 

Let us finally present a result[ll] in Toda field theories which is motivated from 

the form of the quantum group generators (eq. (16)) in GTS. This expression bears 

a striking resemblance to Mandelstam’s s&ton operator in sine-Gordon theory. In 

fact, the following expression turns out to be a density for the universal enveloping 

algebra which is a symmetry of 42) Toda field theories: 

W+) =: expiy/E -0D d&(E) + C/I_W(t)l : 

@Y) =: exp[y’/:md&(E) + C’/:m+4(t)l : . 

Here, y,y’, C, and C’ are constants fixed by the requirements of symmetry generators 

and statistics. For details, see ref.[ll]. 

In this talk, I discussed the deformation of symmetry generators due to the change 

of the coupling constant which is the only parameter (except the spectral parameter) 

in the trigonometric solutions of the Yang-Baxter relation. In the general elliptic 

case, there is another deformation or distortion due to the modulus. Physically, this 

is a mass parameter and one realization of such deformation is the deformation of 

conformal field theory which has received much attention now. Integer eigenvalue 

structure of the corner transfer matrix(CTM) in the eight-vertex model and its rel- 

atives is the statement that the CThI spectrum stays invariant under the both of 

the deformations. The relevant operator algebra is the noncritical Virasoro algebra 

proposed a while ago[21]. All these developments together with the quantum group 

seem to point towards a single appealing and coherent framework of operator algebras 

based on noncommutative geometry. 
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Figure Captions 

Fig. 1: Procedure for obtaining braiding matrices for primary fields belonging to 

higher representations 

Fig. 2: Graphical representation of eq. (29). 
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